» » Евклидово пространство определение для чайников. Евклидовы пространства. Линейная алгебра. Вариации и обобщения

Евклидово пространство определение для чайников. Евклидовы пространства. Линейная алгебра. Вариации и обобщения
Евклидовы пространства
Портабельные Windows-приложения на сайте Bodrenko.com

Глава 4
ЕВКЛИДОВЫ ПРОСТРАНСТВА

Из курса аналитической геометрии читатель знаком с понятием скалярного произведения двух свободных векторов и с четырьмя основными свойствами указанного скалярного произведения. В настоящей главе изучаются линейные пространства любой природы, для элементов которых каким-либо способом (причем безразлично каким) определено правило, ставящее в соответствие любым двум элементам число, называемое скалярным произведением этих элементов. При этом важно только, чтобы это правило обладало теми же четырьмя свойствами, что и правило составления скалярного произведения двух свободных векторов. Линейные пространства, в которых определено указанное правило, называются евклидовыми пространствами. В настоящей главе выясняются основные свойства произвольных евклидовых пространств.

§ 1. Вещественное евклидово пространство и его простейшие свойства

1. Определение вещественного евклидова пространства. Вещественное линейное пространство R называется вещественным евклидовым пространством (или просто евклидовым пространством ), если выполнены следующие два требования.
I. Имеется правило, посредством которого любым двум элементам этого пространства х и у ставится в соответствие вещественное число, называемое скалярным произведением этих элементов и обозначаемое символом (х, у).
П. Указанное правило подчинено следующим четырем аксиомам:
1°. (х, у) = (у, х) (переместительное свойство или симметрия);
2°. (x 1 + x 2, у) = (х 1 , у) + (х 2 , у) (распределительное свойство);
3°. (λ х, у) = λ (х, у) для любого вещественного λ ;
4°. (х, х) > 0, если х - ненулевой элемент; (х, х) = 0, если х - нулевой элемент.
Подчеркнем, что при введении понятия евклидова пространства мы абстрагируемся не только от природы изучаемых объектов, но и от конкретного вида правил образования суммы элементов, произведения элемента на число и скалярного произведения элементов (важно лишь, чтобы эти правила удовлетворяли восьми аксиомам линейного пространства и четырем аксиомам скалярного произведения).
Если же природа изучаемых объектов и вид перечисленных правил указаны, то евклидово пространство называется конкретным .
Приведем примеры конкретных евклидовых пространств.
Пример 1. Рассмотрим линейное пространство В 3 , всех свободных векторов. Скалярное произведение любых двух векторов определим так, как это было сделано в аналитической геометрии (т. е. как произведение длин этих векторов на косинус угла между ними). В курсе аналитической геометрии была доказана справедливость для так определенного скалярного произведения аксиом 1°- 4° (см. выпуск «Аналитическая геометрия», гл.2, §2, п.З). Стало быть, пространство В 3 с так определенным скалярным произведением является евклидовым пространством.
Пример 2. Рассмотрим бесконечномерное линейное пространство С [а, b ] всех функций x(t), определенных и непрерывных на сегменте а ≤ t ≤ b . Скалярное произведение двух таких функций x(t) и y(t) определим как интеграл (в пределах от а до b ) от произведения этих функций

Элементарно проверяется справедливость для так определенного скалярного произведения аксиом 1°-4°. В самом деле, справедливость аксиомы 1° очевидна; справедливость аксиом 2° и 3° вытекает из линейных свойств определенного интеграла; справедливость аксиомы 4° вытекает из того, что интеграл от непрерывной неотрицательной функции x 2 (t) неотрицателен и обращается в нуль лишь тогда, когда эта функция тождественно равна нулю на сегменте а ≤ t ≤ b (см. выпуск «Основы математического анализа», часть I, свойства 1° и 2° из п. 1 §6 гл. 10) (т.е. является нулевым элементом рассматриваемого пространства).
Таким образом, пространство С [а, b ] с так определенным скалярным произведением представляет собой бесконечномерное евклидово пространство .
Пример 3. Следующий пример евклидова пространства дает n-мерное линейное пространство А n упорядоченных совокупностей n вещественных чисел, скалярное произведение двух любых элементов х= (х 1 , x 2 ,...,х n) и у = (y 1 , y 2 ,...,y n) которого определяется равенством

(х, у) = x 1 y 1 + x 2 y 2 + ... + x n y n . (4.2)

Справедливость для так определенного скалярного произведения аксиомы 1° очевидна; справедливость аксиом 2° и 3° легко проверяется достаточно вспомнить определение операций сложения элементов и умножения их на числа:

(х 1 , x 2 ,...,х n) + (y 1 , y 2 ,...,y n) = (x 1 + y 1 , x 2 + y 2 ,...,x n + y n),

λ (х 1 , x 2 ,...,х n) = (λ х 1 , λ x 2 ,..., λ х n);

наконец, справедливость аксиомы 4° вытекает из того, что (х, х) = х 1 2 + x 2 2 + ...+ х n 2 всегда является неотрицательным числом и обращается в нуль лишь при условии х 1 = х 2 = ... = х n = 0.
Рассмотренное в этом примере евклидово пространство часто обозначают символом Е n .
Пример 4. В том же самом линейном пространстве А n введем скалярное произведение любых двух элементов х= (х 1 , x 2 ,...,х n) и у = (y 1 , y 2 ,...,y n) не соотношением (4.2), а другим, более общим, способом.
Для этого рассмотрим квадратную матрицу порядка n

Составим с помощью матрицы (4.3) однородный многочлен второго порядка относительно n переменных х 1 , x 2 ,...,х n

Забегая вперед, отметим, что такой многочлен называется квадратичной формой (порождаемой матрицей (4.3)) (квадратичные формы систематически изучаются в гл. 7 этой книги).
Квадратичная форма (4.4) называется положительно определенной , если она принимает строго положительные значения для всех значений переменных х 1 , x 2 ,...,х n , одновременно не равных нулю (в гл. 7 этой книги будет указано необходимое и достаточное условие положительной определенности квадратичной формы).
Так как при х 1 = х 2 = ... = х n = 0 квадратичная форма (4.4), очевидно, равна нулю, то можно сказать, что положительно определенная
квадратичная форма обращается в нуль лишь при условии х
1 = х 2 = ... = х n = 0.
Потребуем, чтобы матрица (4.3) удовлетворяла двум условиям.
1°. Порождала положительно определенную квадратичную форму (4.4).
2°. Была симметричной (относительно главной диагонали), т.е. удовлетворяла условию a ik = а ki для всех i = 1, 2,..., n и k = I, 2,..., n .
С помощью матрицы (4.3), удовлетворяющей условиям 1° и 2°, определим скалярное произведение двух любых элементов х= (х 1 , x 2 ,...,х n) и у = (y 1 , y 2 ,...,y n) пространства А n соотношением

Легко проверить справедливость для так определенного скалярного произведения всех аксиом 1°-4°. В самом деле, аксиомы 2° и 3°, очевидно, справедливы при совершенно произвольной матрице (4.3); справедливость аксиомы 1° вытекает из условия симметричности матрицы (4.3), а справедливость аксиомы 4° вытекает из того, что квадратичная форма (4.4), представляющая собой скалярное произведение (х, х), является положительно определенной.
Таким образом, пространство А n со скалярным произведением, определяемым равенством (4.5), при условии симметричности матрицы (4.3) и положительной определенности порождаемой ею квадратичной формы, является евклидовым пространством.
Если в качестве матрицы (4.3) взять единичную матрицу, то соотношение (4.4) перейдет в (4.2), и мы получим евклидово пространство Е n , рассмотренное в примере 3.
2. Простейшие свойства произвольного евклидова пространства. Устанавливаемые в этом пункте свойства справедливы для совершенно произвольного евклидова пространства как конечной, так и бесконечной размерности.
Теорема 4.1. Для любых двух элементов х и у произвольного евклидова пространства справедливо неравенство

(x, y ) 2 ≤ (x, x )(y, y ), (4.6)

называемое неравенством Коши-Буняковского.
Доказательство. Для любого вещественного числа λ , в силу аксиомы 4° скалярного произведения, справедливо неравенство (λ х - у, λ х - у) > 0. В силу аксиом 1°-3°, последнее неравенство можно переписать в виде

λ 2 (x, x) - 2 λ(x, y) + (y, y) ≤ 0

Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена является неположительность его дискриминанта, т. е. неравенство (в случае (х, х) = 0 квадратный трехчлен вырождается в линейную функцию, но в этом случае элемент х является нулевым, так что (х, у) = 0 и неравенство (4.7) также справедливо)

(x, y ) 2 - (x, x )(y, y ) ≤ 0. (4.7)

Из (4.7) сразу же вытекает неравенство (4.6). Теорема доказана.
Наша очередная задача - ввести в произвольном евклидовом пространстве понятие нормы (или длины ) каждого элемента. Для этого введем понятие линейного нормированного пространства.
Определение. Линейное пространство R называется нормированным , если выполнены следующие два требования.
I. Имеется правило, посредством которого каждому элементу х пространства R ставится в соответствие вещественное число, называемое нормой (или длиной ) указанного элемента и обозначаемое символом ||х||.
П. Указанное правило подчинено следующим трем аксиомам:
1°. ||х|| > 0, если х - ненулевой элемент; ||х|| = 0, если х - нулевой элемент;
2°. ||λ х|| = |λ | ||х|| для любого элемента х и любого вещественного числа λ ;
3°. для любых двух элементов х и у справедливо следующее неравенство

||х + y || ≤ ||х|| + ||y ||, (4.8)

называемое неравенством треугольника (или неравенством Минковского) .
Теорема 4.2. Всякое евклидово пространство является нормированным, если норму любого элемента х в нем определить равенством

Доказательство. Достаточно доказать, что для нормы, определенной соотношением (4.9), справедливы аксиомы 1°-3° из определения нормированного пространства.
Справедливость для нормы аксиомы 1° сразу вытекает из аксиомы 4° скалярного произведения. Справедливость для нормы аксиомы 2° почти непосредственно вытекает из аксиом 1° и 3° скалярного произведения.
Остается убедиться в справедливости для нормы аксиомы 3°, т. е. неравенства (4.8). Будем опираться на неравенство Коши-Буняковского (4.6), которое перепишем в виде

С помощью последнего неравенства, аксиом 1°-4° скалярного произведения и определения нормы получим

Теорема доказана.
Следствие. Во всяком евклидовом пространстве с нормой элементов, определяемой соотношением (4.9), для любых двух элементов х и у справедливо неравенство треугольника (4.8).

Заметим далее, что в любом вещественном евклидовом пространстве можно ввести понятие угла между двумя произвольными элементами х и у этого пространства. В полной аналогии с векторной алгеброй, мы назовем углом φ между элементами х и у тот (изменяющийся в пределах от 0 до π ) угол, косинус которого определяется соотношением

Данное нами определение угла корректно, ибо в силу неравенства Коши-Буняковского (4.7") дробь, стоящая в правой части последнего равенства, по модулю не превосходит единицы.
Далее договоримся называть два произвольных элемента х и у евклидова пространства Е ортогональными, если скалярное произведение этих элементов (х, у) равно нулю (в этом случае косинус угла (φ между элементами х и у будет равен нулю).
Снова апеллируя к векторной алгебре, назовем сумму х + у двух ортогональных элементов х и у гипотенузой прямоугольного треугольника, построенного на элементах х и у.
Заметим, что во всяком евклидовом пространстве справедлива теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. В самом деле, поскольку х и у ортогональны и (х, у) = 0, то в силу аксиом и определения нормы

||х + y || 2 = (x+y, x+y ) = (x, x ) + 2(x, y ) + (y, y) = (x,x) + (y, y) = ||х|| 2 + ||y || 2 .

Этот результат обобщается и на n попарно ортогональных элементов х 1 , x 2 ,...,х n: если z = х 1 + x 2 + ...+ х n , то

||х|| 2 = (х 1 + x 2 + ...+ х n ,х 1 + x 2 + ...+ х n) = (х 1 ,х 1) + (х 2 ,х 2) + .... + (х n ,х n ) = ||х 1 || 2 + ||х 1 || 2 +... +||х 1 || 2 .

В заключение запишем норму, неравенство Коши-Буняковского и неравенство треугольника в каждом из конкретных евклидовых пространств, рассмотренных в предыдущем пункте.
В евклидовом пространстве всех свободных векторов с обычным определением скалярного произведения норма вектора а совпадает с его длиной |а|, неравенство Коши-Буняковского приводится к виду ((a,b ) 2 ≤ |а| 2 |b | 2 , а неравенство треугольника - к виду |a + b| ≤ |а| + |b | (Если сложить векторы а и b по правилу треугольника, то это неравенство тривиально сводится к тому, что одна сторона треугольника не превосходит суммы двух других его сторон).
В евклидовом пространстве С [а, b ] всех непрерывных на сегменте а ≤ t ≤ b функций х = x(t) со скалярным произведением (4.1) норма элемента х = x(t) равна , а неравенства Коши-Буняковского и треугольника имеют вид

Оба эти неравенства играют важную роль в различных разделах математического анализа.
В евклидовом пространстве Е n упорядоченных совокупностей n вещественных чисел со скалярным произведением (4.2) норма любого элемента х = (х 1 , x 2 ,...,х n) равна


Наконец, в евклидовом пространстве упорядоченных совокупностей n вещественных чисел со скалярным произведением (4.5) норма любого элемента х = (х 1 , x 2 ,...,х n) равна 0 (напоминаем, что при этом матрица (4.3) симметрична и порождает положительно определенную квадратичную форму (4.4)).

а неравенства Коши-Буняковского и треугольника имеют вид

Определение евклидова пространства

Определение 1. Вещественное линейное пространство называется евклидовым , если в нём определена операция, ставящая в соответствие любым двум векторам x и y из этого пространства число, называемое скалярным произведением векторов x и y и обозначаемое (x,y) , для которого выполнены условия:

1. (x,y) = (y,x);

2. (x + y,z) = (x,z) + (y,z) , где z - любой вектор, принадлежащий данному линейному пространству;

3. (?x,y) = ? (x,y) , где ? - любое число;

4. (x,x) ? 0 , причём (x,x) = 0 x = 0.

Например, в линейном пространстве одностолбцовых матриц скалярное произведение векторов

можно определить формулой

Евклидово пространство размерности n обозначают En . Заметим, что существуют как конечномерные, так и бесконечномерные евклидовы пространства.

Определение 2 . Длиной (модулем) вектора x в евклидовом пространстве En называют (x,x) и обозначают её так: |x| = (x,x) . У всякого вектора евклидова пространства существует длина, причём у нулевого вектора она равна нулю.

Умножая ненулевой вектор x на число , мы получим вектор , длина которого равна единице. Эта операция называется нормированием вектора x .

Например, в пространстве одностолбцовых матриц длину вектора можно определить формулой:

Неравенство Коши-Буняковского

Пусть x? En и y ? En – любые два вектора. Докажем, что для них имеет место неравенство:

(Неравенство Коши-Буняковского)

Доказательство. Пусть? - любое вещественное число. Очевидно, что (?x ? y,?x ? y) ? 0. С другой стороны, в силу свойств скалярного произведения можем написать

Получили, что

Дискриминант этого квадратного трёхчлена не может быть положительным, т.е. , откуда вытекает:

Неравенство доказано.

Неравенство треугольника

Пусть x и y - произвольные векторы евклидова пространства En , т.е. x ? En и y ? En .

Докажем, что . (Неравенство треугольника).

Доказательство. Очевидно, что С другой стороны, . Принимая во внимание неравенство Коши-Буняковского, получим

Неравенство треугольника доказано.

Норма евклидова пространства

Определение 1 . Линейное пространство ? называется метрическим , если любым двум элементам этого пространства x и y поставлено в соответствие неотрицательное число? (x,y) , называемое расстоянием между x и y , (? (x,y) ? 0) , причём выполняются условия (аксиомы):

1) ? (x,y) = 0 x = y

2) ? (x,y) = ? (y,x) (симметрия);

3) для любых трёх векторов x , y и z этого пространства? (x,y) ? ? (x,z) + ? (z,y) .

Замечание. Элементы метрического пространства обычно называют точками.

Евклидово пространство En – метрическое, причём в качестве расстояния между векторами x? En и y? En можно взять x ? y .

Так, например, в пространстве одностолбцовых матриц, где

следовательно

Определение 2 . Линейное пространство ? называется нормированным , если каждому вектору x из этого пространства поставлено в соответствие неотрицательное число, называемое его нормой x . При этом выполняются аксиомы:

Нетрудно видеть, что нормированное пространство является метрическим пространством. В самом деле, в качестве расстояния между x и y можно взять . В евклидовом пространстве En в качестве нормы любого вектора x? En принимается его длина, т.е. .

Итак, евклидово пространство En является метрическим пространством и более того, евклидово пространство En является нормированным пространством.

Угол между векторами

Определение 1 . Углом между ненулевыми векторами a и b евклидова простран ства En называют число для которого

Определение 2 . Векторы x и y евклидова пространства En называются ортогона льными , если для них выполняется равенство (x,y) = 0.

Если x и y - ненулевые, то из определения следует, что угол между ними равен

Заметим, что нулевой вектор по определению считается ортогональным любому вектору.

Пример . В геометрическом (координатном) пространстве?3, которое является частным случаем евклидова пространства, орты i , j и k взаимно-ортогональны.

Ортонормированный базис

Определение 1 . Базис e1 ,e2 ,...,en евклидова пространства En называется ортогона льным , если векторы этого базиса попарно ортогональны, т.е. если

Определение 2 . Если все векторы ортогонального базиса e1 , e2 ,...,en единичны, т.е. ei = 1 (i = 1,2,...,n) , то базис называется ортонормированным , т.е. для ортонормированного базиса

Теорема. (о построении ортонормированного базиса)

Во всяком евклидовом пространстве E n существуют ортонормированные базисы.

Доказательство . Докажем теорему для случая n = 3.

Пусть E1 ,E2 ,E3 - некоторый произвольный базис евклидова пространства E3 Построим какой-нибудь ортонормированный базис в этом пространстве. Положим , где ? - некоторое вещественное число, которое выберем таким образом, чтобы было (e1 ,e2 ) = 0, тогда получим

причём очевидно, что? = 0 , если E1 и E2 ортогональны, т.е. в этом случае e2 = E2 , а , т.к. это базисный вектор.

Учитывая, что (e1 ,e2 ) = 0, получим

Очевидно, что , если e1 и e2 ортогональны с вектором E3 , т.е. в этом случае следует взять e3 = E3 . Вектор E3 ? 0 , т.к. E1 , E2 и E3 линейно независимы, следовательно e3 ? 0.

Кроме того, из приведённого рассуждения следует, что e3 нельзя представить в виде линейной комбинации векторов e1 и e2 , следовательно векторы e1 , e2 , e3 линейно незави симы и попарно ортогональны, следовательно, их можно взять в качестве базиса евклидова пространства E3 . Остаётся только пронормировать построенный базис, для чего достаточно каждый из построенных векторов разделить на его длину. Тогда получим

Итак, мы построили базис - ортонормированный базис. Теорема доказана.

Применённый способ построения ортонормированного базиса из произвольного базиса называется процессом ортогонализации . Заметим, что в процессе доказательства теоремы мы установили, что попарно ортогональные векторы линейно независимы. Кроме того, если - ортонормированный базис в En , тогда для любого вектора x? En имеет место единственное разложение

где x1 , x2 ,..., xn - координаты вектора x в этом ортонормированном базисе.

Так как

то умножив скалярно равенство (*) на , получим .

В дальнейшем мы будем рассматривать только ортонормированные базисы, а потому для простоты их записи нолики сверху у базисных векторов мы будем опускать.

Евклидово пространство

Евкли́дово простра́нство (также Эвкли́дово простра́нство ) - в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии . В этом случае предполагается, что пространство имеет размерность 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно -мерное евклидово пространство обозначается , хотя часто используется не вполне приемлемое обозначение .

,

в простейшем случае (евклидова норма ):

где (в евклидовом пространстве всегда можно выбрать базис , в котором верен именно этот простейший вариант).

2. Метрическое пространство , соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:

,

Связанные определения

  • Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика .
  • Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.
  • Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) - каковым, например, является риманово многообразие нулевой кривизны.

Примеры

Наглядными примерами евклидовых пространств могут служить пространства:

Более абстрактный пример:

Вариации и обобщения

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Евклидово пространство" в других словарях:

    Конечномерное векторное пространство с положительно определённым скалярным произведением. Является непосредств. обобщением обычного трёхмерного пространства. В Е. п. существуют декартовы координаты, в к рых скалярное произведение (ху)векторов х … Физическая энциклопедия

    Пространство, свойства которого изучаются в евклидовой геометрии. В более широком понимании евклидовым пространством называется n мерное векторное пространство, в котором определено скалярное произведение … Большой Энциклопедический словарь

    Евклидово пространство - пространство, свойства которого описываются аксиомами евклидовой геометрии. Упрощенно можно определить евклидово пространство, как пространство на плоскости или в трехмерном объеме, в которых заданы прямоугольные (декартовы) координаты, а… … Начала современного естествознания

    Евклидово пространство - см. Многомерное (n мерное) векторное пространство, Векторное (линейное) пространство … Экономико-математический словарь

    евклидово пространство - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN Cartesian space … Справочник технического переводчика

    Пространство, свойства которого изучаются в евклидовой геометрии. В более широком понимании евклидовым пространством называют n мерное векторное пространство, в котором определено скалярное произведение. * * * ЕВКЛИДОВО ПРОСТРАНСТВО ЕВКЛИДОВО… … Энциклопедический словарь

    Пространство, свойства к рого изучаются в евклидовой геометрии. В более широком понимании Е. п. наз. n мерное векторное пространство, в к ром определено скалярное произведение … Естествознание. Энциклопедический словарь

    Пространство, свойства к рого описываются аксиомами евклидовой геометрии. В более общем смысле Е. п. конечномерное действительное векторное пространствоRn со скалярным произведением(х, у), х, к рое в надлежащим образом выбранных координатах… … Математическая энциклопедия

    - (в математике) пространство, свойства которого описываются аксиомами евклидовой геометрии (См. Евклидова геометрия). В более общем смысле Е. п. называется n мepное Векторное пространство, в котором возможно ввести некоторые специальные… … Большая советская энциклопедия

    - [по имени др. греч. математика Евклида (Eukleides; 3 в. до н. э.)] пространство, в т. ч. многомерное, в к ром возможно ввести координаты х1,..., хп так, что расстояние р (М,М) между точками М (х1 ..., х n) и М (х 1 , .... xn) может быть… … Большой энциклопедический политехнический словарь

Евклидово пространство

Т.А. Волкова, Т.П. Кныш.

И КВАДРАТИЧНЫЕ ФОРМЫ

ЕВКЛИДОВО ПРОСТРАНСТВО

Санкт-Петербург


Рецензент: кандидат технических наук, доцент Шкадова А.Р.

Евклидово пространство и квадратичные формы: конспект лекций. – СПб.: СПГУВК, 2012 – с.

Конспект лекций предназначен для студентов второго курса направления бакалавриата 010400.62 «Прикладная математика и информатика» и первого курса направления бакалавриата 090900.62 «Информационная безопасность».

Пособие содержит полный конспект лекций по одному из разделов дисциплины «Геометрия и алгебра» для направления 010400.62 и дисциплине «Алгебра и геометрия» для направления 090900.62 Учебное пособие соответствует рабочим программам дисциплин, стандартам указанных специальностей и может быть использовано при подготовке к экзамену студентами и преподавателями.

©Санкт-Петербургский государственный

университет водных коммуникаций, 2012


Многие свойства объектов, встречающихся в геометрии, тесно связаны с возможностью измерения длин отрезков и угла между прямыми. В линейном пространстве мы еще не можем производить такие измерения, вследствие чего область применения общей теории линейных пространств к геометрии и к ряду других математических дисциплин довольно сильно сужается. Это затруднение, однако, может быть устранено, если ввести понятие скалярного произведения двух векторов. А именно, пусть − линейное -мерное действительное пространство. Поставим в соответствие каждой паре векторов , действительное число и назовем это число скалярным произведением векторов и , если удовлетворяются следующие требования:

1. (коммутативный закон) .

3. для любого действительного .

4. для любого ненулевого вектора .

Скалярное произведение является частным случаем понятия числовой функции двух векторных аргументов , т. е. функции, значения которой суть числа. Мы можем, следовательно, назвать скалярным произведением такую числовую функцию векторных аргументов , , значения которой действительны для любых значений аргументов из и для которой удовлетворяются требования 1 − 4.

Действительное линейное пространство , в котором определено скалярное произведение, будет называться евклидовым и будет обозначаться через .

Отметим, что в евклидовом пространстве скалярное произведение нулевого вектора на любой вектор равно нулю: . Действительно, , и в силу требования 3 . Полагая , получаем, что . Отсюда, в частности, .



1. Пусть − обычное трехмерное пространство геометрических векторов с общим началом в точке . В аналитической геометрии скалярным произведением двух таких векторов называется действительное число, равное , где и − длины векторов и , а − угол между векторами , , и доказывается, что для этого числа удовлетворяются все требования 1 − 4.

Таким образом, введенное нами понятие скалярного произведения является обобщением понятия скалярного произведения геометрических векторов.

2. Рассмотрим пространство – мерных строк с действительными координатами и поставим в соответствие каждой паре и таких векторов-строк действительное число

Легко проверить, что для этого числа удовлетворяются все требования 1 − 4:

и аналогично . Наконец,

так как по меньшей мере одно из чисел при отлично от нуля.

Мы видим отсюда, что это число является скалярным произведением векторов строк и , а пространство , после того как мы ввели такое скалярное произведение, становится евклидовым.

3. Пусть - линейное действительное -мерное пространство и − некоторый его базис. Поставим в соответствие каждой паре векторов , действительное число . Тогда пространство превратится в евклидово, т. е. число будет скалярным произведением векторов и . В самом деле:

Можно даже другими способами превратить наше пространство в евклидово, например, мы могли бы поставить в соответствие паре векторов , действительное число

и легко проверить, что для такого числа удовлетворяются все требования 1 − 4, характеризующие скалярное произведение. Но так как здесь (при том же базисе ) мы определили другую числовую функцию , то из получается другое евклидово пространство с другим «мероопределением».

4. Наконец, обращаясь к тому же пространству , рассмотрим числовую функцию , которая при , определяется равенством . Эта функция уже не является скалярным произведением, так как нарушается требование 4: при , вектор равен , a . Тем самым здесь из не получается евклидова пространства.

Пользуясь требованиями 2 и 3, входящими в определение скалярного произведения, легко получить следующую формулу:

где , − две произвольные системы векторов. Отсюда, в частности, получается при произвольном базисе и для любой пары векторов , , что

где . Выражение в правой части равенства (1) есть многочлен от и и называется билинейной формой от и (каждый ее член является линейным, т.е. первой степени, как относительно , так и относительно ). Билинейная форма называется симметрической , если для каждого ее коэффициента выполняется условие симметрии . Таким образом, скалярное произведение в произвольном базисе выражается в виде билинейной симметрической формы от координат векторов , с действительными коэффициентами . Но этого еще недостаточно. А именно, полагая , получаем из равенства (1), что

§3. Размерность и базис векторного пространства

Линейная комбинация векторов

Тривиальная и нетривиальная линейная комбинация

Линейно зависимые и линейно независимые векторы

Свойства векторного пространства, связанные с линейной зависимостью векторов

п -мерное векторное пространство

Размерность векторного пространства

Разложение вектора по базису

§4. Переход к новому базису

Матрица перехода от старого базиса к новому

Координаты вектора в новом базисе

§5. Евклидово пространство

Скалярное произведение

Евклидово пространство

Длина (норма) вектора

Свойства длины вектора

Угол между векторами

Ортогональные векторы

Ортонормированный базис


§ 3. Размерность и базис векторного пространства

Рассмотрим некоторое векторное пространство (V, Å, ∘) над полем Р . Пусть – некоторые элементы множества V, т.е. векторы.

Линейной комбинацией векторов называется любой вектор, равный сумме произведений этих векторов на произвольные элементы поля Р (т.е. на скаляры) :

Если все скаляры равны нулю, то такая линейная комбинация называется тривиальной (простейшей), и .

Если хотя бы один скаляр отличен от нуля, линейная комбинация называется нетривиальной .

Векторы называются линейно независимыми , если только тривиальная линейная комбинация этих векторов равна :

Векторы называются линейно зависимыми , если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная .

Пример . Рассмотрим множество упорядоченных наборов четверок действительных чисел – это векторное пространство над полем действительных чисел. Задание: выяснить, являются ли векторы , и линейно зависимыми.

Решение .

Составим линейную комбинацию этих векторов: , где – неизвестные числа. Потребуем, чтобы эта линейная комбинация была равна нулевому вектору: .

В этом равенстве запишем векторы в виде столбцов чисел:

Если найдутся такие числа , при которых это равенство выполняется, и хотя бы одно из чисел не равно нулю, значит это нетривиальная линейная комбинация и векторы линейно зависимы.

Выполним действия:

Таким образом, задача сводится к решению системы линейных уравнений:

Решая ее, получим:

Ранги расширенной и основной матриц системы равны и меньше числа неизвестных , следовательно, система имеет бесконечное множество решений.

Пусть , тогда и .

Итак, для данных векторов существует нетривиальная линейная комбинация, например при , которая равна нулевому вектору, значит, эти векторы линейно зависимы.

Отметим некоторые свойства векторного пространства, связанные с линейной зависимостью векторов :

1. Если векторы линейно зависимы, то хотя бы один из них является линейной комбинацией остальных.

2. Если среди векторов имеется нулевой вектор , то эти векторы линейно зависимы.

3. Если часть векторов являются линейно зависимыми, то и все эти векторы – линейно зависимые.

Векторное пространство V называется п -мерным векторным пространством , если в нем найдется п линейно независимых векторов, и любой набор из (п + 1) векторов является линейно зависимым.

Число п называется размерностью векторного пространства , и обозначается dim(V) от английского «dimension» – размерность (измерение, размер, габарит, величина, протяженность и т.д.).

Совокупность п линейно независимых векторов п -мерного векторного пространства называется базисом .

(*)
Теорема (о разложении вектора по базису): Каждый вектор векторного пространства можно представить (и притом единственным образом) в виде линейной комбинации векторов базиса :

Формула (*) называется разложением вектора по базису , а числа координатами вектора в этом базисе.

В векторном пространстве может быть более одного или даже бесконечно много базисов. В каждом новом базисе один и тот же вектор будет иметь разные координаты.


§ 4. Переход к новому базису

В линейной алгебре часто встает задача нахождения координат вектора в новом базисе, если известны его координаты в старом базисе.

Рассмотрим некоторое п -мерное векторное пространство (V, +, ·) над полем Р . Пусть в этом пространстве есть два базиса: старый и новый .

Задача: найти координаты вектора в новом базисе.

Пусть векторы нового базиса в старом базисе имеют разложение:

,

Выпишем координаты векторов в матрицу не строками, как они записаны в системе, а столбцами:

Полученная матрица называется матрицей перехода от старого базиса к новому.

Матрица перехода связывает координаты любого вектора в старом и новом базисе следующим соотношением:

,

где - искомые координаты вектора в новом базисе.

Таким образом, задача нахождения координат вектора в новом базисе сводится к решению матричного уравнения: , где Х – матрица-столбец координат вектора в старом базисе, А – матрица перехода от старого базиса к новому, Х * – искомая матрица-столбец координат вектора в новом базисе. Из матричного уравнения получим:

Итак, координаты вектора в новом базисе находятся из равенства:

.

Пример. В некотором базисе даны разложения векторов:

Найти координаты вектора в базисе .

Решение .

1. Выпишем матрицу перехода к новому базису, т.е. координаты векторов в старом базисе запишем столбцами:

2. Найдем матрицу А –1:

3. Выполним умножение , где – координаты вектора :

Ответ : .


§ 5. Евклидово пространство

Рассмотрим некоторое п -мерное векторное пространство (V, +, ·) над полем действительных чисел R . Пусть – некоторый базис этого пространства.

Введем в этом векторном пространстве метрику , т.е. определим способ измерения длин и углов. Для этого определим понятие скалярного произведения.